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Abstract. This paper investigates a general class of viscous regularizations of the compressible
Euler equations. A unique regularization is identified that is compatible with all the generalized
entropies, a la [Harten et al., STAM J. Numer. Anal., 35 (1998), pp. 2117-2127], and satisfies the
minimum entropy principle. A connection with a recently proposed phenomenological model by
[H. Brenner, Phys. A, 370 (2006), pp. 190-224] is made.
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1. Introduction. Proving positivity of the density and internal energy and prov-
ing a minimum principle on the specific entropy of numerical approximations of the
compressible Euler equations is a challenging task that has so far been achieved for
very few numerical schemes on arbitrary meshes in two and higher space dimensions.
The Godunov scheme [6] and some variants of the Lax! scheme [12] are known to
satisfy all these properties (see [2] for the Godunov scheme, [14, appendix] for the
explicit Lax algorithm, and [19] for the implicit version of the Lax algorithm). The
argumentation for the Godunov scheme relies on the fact that Riemann problems
are solved exactly at each time step, and averaging Riemann solutions preserves the
above-mentioned properties. None of the above arguments can be readily extended to
central high-order schemes or more generally to schemes that are based on Galerkin
approximations. One way to address this issue consists of using the standard parabolic
regularization of the Euler equations to construct a scheme for which the vanishing
viscosity is proportional to the mesh size. The problem with this approach is that
the regularization acts on the conserved variables, which are the density, momentum,
and total energy. Since the momentum and total energy are not Galilean invariant, a
change of reference frame by translation and/or rotation changes the regularization.
A way out of this dilemma consists of considering the Navier—Stokes regularization as
a starting point for constructing a numerical method. However, one then encounters
two serious difficulties. The first is that the Navier—Stokes equations do not include
any regularization in the continuity equation, which is inconsistent with most numer-
ical discretizations. The second is that, whereas it is known that the Euler equations
satisfy a minimum entropy principle on the specific entropy (see, e.g., [17]), it is also
known that the Navier—Stokes equations violate this minimum principle if the thermal
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diffusivity is nonzero; see, e.g., [15, Theorem 8.2.3]. These two observations make the
Navier—Stokes regularization inconvenient for numerical purposes. One is then led to
ponder the following question: Is it possible to find a regularization of the Euler equa-
tions that is Galilean invariant, ensures positivity of the density and internal energy,
satisfies a minimum entropy principle, and is compatible with a large class of entropy
inequalities? The objective of this paper is to propose answers to this question.

The paper is organized as follows. The parabolic and the Navier—Stokes regular-
izations and their apparent shortcomings mentioned above are discussed in section 2.
A general family of regularizations is introduced and investigated in sections 3 and
4. The minimum entropy principle is investigated in section 3, and the compatibility
with entropy inequalities is studied in section 4. The key result of this paper is The-
orem 4.1: Only one regularization technique satisfies the minimum entropy principle
and is compatible with all the generalized entropies of [9]. This formulation is com-
pared in section 5 with a reformulation of the Navier—Stokes equations proposed by [1]
that is based on heuristic arguments. A striking observation is that, by distinguish-
ing the so-called mass and volume velocities, it is possible to rewrite the proposed
regularization into a form similar to that of the Navier-Stokes equations with rota-
tion invariant viscous fluxes. This way of looking at the regularization reconciles the
parabolic and Navier—Stokes regularizations and shows that these are two faces of the
same coin. The key results of the paper are summarized in subsection 5.3 and illus-
trated in subsection 5.4. Standard identities and inequalities from thermodynamics
that are used in this paper are collected in Appendix A.

2. Standard regularizations. We review in this section some well-known reg-
ularization techniques and discuss the pros and cons thereof.

2.1. Statement of the problem. Consider the compressible Euler equations
in conservative form in RY,

(2.1) Op+V-m =0,

(2.2) om+V-(u®@m)+Vp=0,

(2.3) O E + V-(u(E +p)) =0,

(2.4) p(x,0) = po, m(x,0) = my, E(x,0) = Ey,

where the dependent variables are the density, p, the momentum, m, and the total
energy, F. We adopt the usual convention that for any vectors a, b, with entries
{ai}i=1,...d, {bi}i=1,....q, the following holds: (@ ® b);; = a;b; and V-a = 0,,a;,
(Va);; = 0z,a;. Moreover, for any order 2 tensors g, b, with entries {g;;}: j=1,...a:
{hij}i,jzl,...,da we define (Vg)j = 3@9@‘, a'V = aiaxi, (ga)l = Gijaj, and g:[h =
gijhij, where repeated indices are summed from 1 to d.

The pressure, p, is given by the equation of state, which we assume to derive from
a specific entropy, s(p, e), defined through the thermodynamics identity:

(2.5) Tds:= de+ pdr,

1 1

where 7 :=p~ 1, e:=p ' E— %uQ is the specific internal energy, and u := p~ "m is the

velocity of the fluid particles. For instance, it is common to take s = log(eﬁ p~ 1) for

a polytropic ideal gas. Using the notation s, := % and s, 1= g—z, the identity (2.5)

implies that

(2.6) So:=T71, sp = —pTtp~2
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The equation of state takes the form p := —p?s,s_ ! or

(2.7) pse + p*s, = 0.

The key structural assumption is that —s is strictly convex with respect to 7 := p~!

and e. Upon introducing o(7,e) := s(p, e), the convexity hypothesis is equivalent to
assuming that 0., < 0, 0ee < 0, and 0,,0¢. — 02, < 0 (see, e.g., [5]). This in turn
implies that

(2.8) 9,(p?s,) <0, See < 0, 0 < 9,(p?sp)Sece — 025?;@’
or equivalently that the matrix
(2.9) Y= <P_18p(p28p) pSp@)

PSpe PSee

is negative definite. In the rest of the paper we assume that (2.8) holds and that the
temperature is positive,

(2.10) 0 < se.

Remark 2.1. Note in passing that, contrary to what is sometimes done in the
literature, we do not assume that the pressure is positive, which requires s, < 0 (see,
e.g., [5, p.- 99], [9, (2.3)]). For instance, the assumptions (2.8) and (2.10) hold for
stiffened gases, but the quantity s, can change sign. It is shown in the appendix (see
Remark A.1) that the convexity assumption (2.8) and the positivity of the tempera-
ture (2.10) are sufficient to prove that the Euler system is hyperbolic. This fact was
first established by [7] in one dimension. It was established again in [4] and [9].

The objective of the present paper is to introduce a viscous regularization of
(2.1)—(2.4) that is compatible with thermodynamics and that can serve as a reasonable
starting point for numerical approximation.

2.2. Monolithic parabolic regularization. A common regularization of (2.1)
for theoretical and numerical purposes consists of the following monolithic parabolic
regularization:

(2.11) Op+ V-m = ecAp,

(2.12) Om ~+ V-(u @ m) + Vp = eAm,

(2.13) O E 4 V-(u(E +p)) = eAE,

(2.14) p(x,0) = po, m(xz,0) = my, E(x,0) = Ey,

where € is a small parameter. We call this regularization monolithic since no distinc-
tion is made between the conserved quantities; i.e., the operator €A is applied blindly
to all the conserved quantities.

It can be shown that the Lax—Friedrichs scheme and its parabolic analogue in-
troduced in [14] are approximations of (2.11). For instance, considering a nonlinear
conservation equation O,U + V-F(U) = 0, where U is the dependent vector-valued
variable in R™, the scheme introduced in [12, p. 163] in one space dimension consists
of considering

Ut = 5( U ) — 5)\(F( 1) — F(U? )

(Ui, —207 + U )
h? ’

n 1 n n 1 —
(2.15) =U; - 5)\(F( i) —FU ) + 7'5}127' '
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where h is the mesh size, 7 is the time step, and A := 7h~!. Assuming the flux
F' to be uniformly Lipschitz, to simplify, and upon introducing the maximum wave
speed 8 := ||F'||ps(zm gmxgm) and the CFL number cfl := grh~t, (2.15) is the
centered second-order approximation of the following parabolic regularization of the
conservation equation, U + V-F(U) — eAU = 0, with the artificial viscosity € :=
%h/\_1 = %% Bh. In other words, the Lax—Friedrichs scheme is a centered second-
order approximation of (2.11)-(2.14) with the numerical viscosity € = L Lh|[|lull +
C|‘Loc(RdX[R+)7 where ¢ is the speed of sound. That the CFL number appears at the
denominator of the artificial viscosity makes this scheme over-dissipative. It is often

more appropriate to consider the following alternative:

1

1 ur,-20'+U?"
Ut = Ut - E,) - P ) + e T T2 TR

h? ’

which is also a centered second-order approximation of the parabolic regularization
U + V-F(U) — eAU = 0 with the viscosity £8h, which is more traditionally as-
sociated with up-winding. This algorithm is often abusively referred to as the Lax—
Friedrichs scheme. Both the above numerical schemes have interesting positivity and
entropy properties; see, e.g., [11, 17, 18, 14].

Despite its appealing mathematical properties, the above regularization is often
criticized by physicists since it seemingly violates the Galilean and rotational invari-
ance. It also dissipates the density, the momentum, and the total energy, which
seemingly are again aberrations from the physical point of view. When looking at
(2.11)—(2.14), it is indeed difficult to see how this set of equations can be reconciled
with the Navier—Stokes equations, which are usually viewed by physicists to be the
acceptable regularization of the Euler equations.

2.3. Navier—Stokes regularization. As mentioned above, a common “physi-
cal” way to regularize the Euler system (2.1)—(2.4) consists of considering this system
as the limit of the Navier—Stokes equations

Op+V-m =0,
om+V-(u@m)+Vp—V.g=0,

WE+ V- (u(E+p)) —V-(h+gu) =0,

p(x,0) = po, m(xz,0) = my, E(x,0) = Ey,

where g and h are the viscous and thermal fluxes. The most elementary model
compatible with Galilean invariance consists of assuming that

(2.20) g =2uViu + AV-ul, h =rVT,

where Véu := pu(Vu+(Vu)T), lis the identity matrix in R?, and 7T is the temperature,
T := s_ 1. The viscosity p and the thermal diffusivity » are required to be nonnegative
by the Clausius—Duhem inequality, although these two parameters may depend on the
state (p,e).

We claim that (2.16)—(2.20) is not appropriate for numerical purposes, and we
identify at least two obstructions. The first problem is that the minimum entropy
principle cannot be satisfied for general initial data if the thermal dissipation is not
zero. More precisely, assuming x # 0, for any € R there exist initial data so that the
set {s > r} is not positively invariant. Let us recall a simple proof of this statement
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borrowed from [15, Theorem 8.2.3]. The specific entropy for the Navier—Stokes system
satisfies

1
(2.21) Os+u-Vs = T (0:Viu + V-(kVT)).

Assume that ug = mop, Lis constant. Assume also that the equation of state of
the fluid is such that p. # 0. Then one can use 7" and s as independent state
g((i’;) = %(spsee — SeSpe) = pe # 0 (see (A.6)). One can
then choose sy with global minimum at 0 and Ty so that ATy(0) < 0 and VT(0) = 0.
Without loss of generality, we assume that x > 0 in a neighborhood of 0. Then
9:5(0,0) = rpy H(0)TH(0) " AT(0) < 0, thereby proving that {s > r} is not positively
invariant for the regularized system (2.16)—(2.20).

Another argument often invoked against the presence of thermal dissipation is
that it is incompatible with symmetrization of the Navier—Stokes system when using
the generalized entropies of Harten for polytropic ideal gases. The function pf(s) is
said to be a generalized entropy if f'(y — 1)y~ — f/ >0, f/ > 0, and f € C*(R;R);
see [8]. (Note that the above inequality slightly differs from that in [8] since Harten’s
definition of the specific entropy is s = log(ep*~7).) It is proved in [10] that the only
generalized entropy that symmetrizes the Navier-Stokes system (2.16)—(2.20) is the
trivial one ps when k # 0; see also [18, equation (2.11) and Remark 2, p. 460]. Note,
though, that symmetrization of the viscous fluxes is not a necessary condition for
proving entropy dissipation; see, e.g., [16, section 1.1]. It is nevertheless true that the
Navier—Stokes system with x # 0 does not admit a generalized entropy inequality if
f"(s) # 0, and this fact is a simple consequence of the following quadratic form not
being nonnegative: f/(s)X? — f"’(s)XY, (X,Y) € R%

The above two arguments seem to imply that one should take x = 0 if one wants
to use the Navier—Stokes system as a numerical device that regularizes the Euler
equations, satisfies the minimum entropy principle, and satisfies entropy inequalities.
In that case, one then faces a serious obstruction when solving for contact waves. For
instance, assuming that the initial data, pg, mg, Eq are such that the exact velocity
is constant in time and space, say © = (e, the problem (2.16)—(2.19) reduces to
solving two linear transport equations:

(2.22) Owp+ BOzp =0, p(-,0) = po,
(223) O + B0 E =0, E(a 0) = Ep.

variables, since p2det

Note that w being constant implies that the pressure gradient is zero. The exact
solution is p(x,t) = po(x — Pte,). To make things a little bit more interesting,
assume that po is piecewise constant, say po(z) = 1 if < 0 and po(z) = 2 if
x > 0. In the absence of some sort of regularization, the above two linear transport
equations are difficult to solve numerically. Except for the method of characteristics
and Lagrangian-based techniques, we are not aware of any numerical methods that
can solve these equations without resorting to some kind of viscous regularization.

In conclusion, if positivity of the density, the minimum entropy principle, and
a reasonable approximation of contact discontinuities is desired, the Navier—Stokes
regularization does not seem to be appropriate to regularize (2.1)—(2.4), whether & is
Zero or not.

3. General regularization. We investigate in this section the properties of a
class of regularizations that we expect to be as general as possible. More precisely,
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let us consider the following general regularization for the Euler system:

(3.1) Op+Vm—V-f=0,
. om+V-(u®@m)+Vp—V-.g=0,
(3.3) 0E + V-(u(E +p)) — V-(h+gu) =0,

where for the time being we let the fluxes f, g, and h be as general as possible. A
theory of viscous regularization for general nonlinear hyperbolic system has been de-
veloped in [16] and [15, Chapter 6]. This theory identifies classes of entropy-dissipative
viscous regularizations and establishes short-term existence results. Our objective in
this paper is more restrictive. We want to construct the fluxes f, g, and h so that
(3.1)—(3.3) gives a positive density, gives a minimum principle on the specific entropy,
and is compatible with a large class of entropies. (Note in passing that the positivity
of the internal energy will be a consequence of the positivity of the density and the
minimum entropy principle.) In the rest of the paper, we are going to work under the
assumption that (3.1)—(3.3) has a smooth solution.

3.1. Positivity of the density. Let us now choose the flux f so that it regu-
larizes the mass conservation equation. From the theory of second-order elliptic equa-
tions we conjecture that a(p,e)Vp should be appropriate, where a(p, e) is a smooth
positive function of p and e. In particular, it is reasonable to expect that the following
choice implies positivity of the density:

(3.4) a(p,e) = x(p,e)¢' (p),

where x is a smooth positive function of p and e and ¢ is a strictly increasing function.
This definition gives f = x(p, ¢)V(p). This regularization is at least compatible with
the nonnegative density principle as stated in the following lemmas.

LEMMA 3.1 (nonnegative density principle). Let f = a(p,e)Vp in (3.1), with
a € L=(R%R) and inf ¢ yex2 a(§,m) > 0. Assume that the smooth solution of (3.1)
satisfies (1) w and V-u € LY(R?xR.;R); (ii) aVp € L'((0,00); LY(R?)); and (iii)
Oip + V-(pu) € LY((0,00); L*(RY)). Then the solution of (3.1) is such that

(3.5) ess inf p(x,t) >0 vt > 0.

TER

Proof. Let € > 0, and let he(x) be a smooth concave function that approximates
min(z, 0) uniformly over R; say there is ¢ > 0 so that sup,c, |he(s) — min(s,0)] +
|he(s) — shl(s)] < ce and h! < 0. Let t > 0 be some fixed time. (In the remainder
of the paper ¢ is a generic constant whose value may change at each occurrence.) Let
B(0, R) be the ball centered at 0 of radius R such that

¢
/ / |aVp| + |0:p+ V-(pu)| dz < e.
0 J&I\B(0,R)

Let x be aregularized characteristic function with the following properties: x|p(0,r) =
L and X|wa\p(o,r+1) = 0. Multiplying the weak form of (3.1) by the legitimate test
function xh.(p), we obtain

[, (Hox@)@1p + V-(up)) + aVp¥ (ki) d = 0.
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Using that k! <0, we infer that

/R (W)@ + -(up)) + Al (p)TpTX) d 2 0.

This in turn implies that

/ BL(0) (Php+ -(uap)) d

> / (1= RN (@1 + V-(uwp)) o~ / ahl(p)VpVxde

R

> / 11, (0) (Dup + V-(up))| dz — / Vo de
R4\ B(0,R) R4\ B(0,R)

> e / (|aVp| + |0up + V-(pu)]) da.
r4\B(0,R)

Observing that hc(p)(9p + V-(up)) = dihe(p) + V-(he(p)u) + (phec(p) — he(p))V-u,
we deduce that

/ (0help) + V() e > - / 1(oh (o) ~ help)) Voul da
—c / (aVp| + 0o + V-(ou)]) daz.
R4\ B(0,R)

Now, we proceed as in [17]. We introduce the cone C := {(x,7) | |z|| < R+ (t —
T)lu|gee, 0 < 7 <t} and, using the above estimate together with the assumptions
regarding the behavior of w, p, and a, we infer that

/C (athe(p) + V~(he(p)u)) da dt > /O t / ) (athe(p) + V~(h€(p)u)) dadt — ce > —ce.

Denoting by n = (ng,n:) the unit exterior normal to the mantle, M, of the cone C,
we have ng, = (1 + ||u||%x)_%ﬁ and n¢ = (1 + ||u)|2)"2|lul|L=, and we observe
that (n; + u-ng) > 0. Then,

/C ((%he(p) + V-(he(p)u)) de dt — /

lzl<R

+ /M he(p(z,t))(ne + ung)dM

elpt, ) de = /nngﬁf(ﬁoL(z)) de

<[ oy e ) d [ b)) de.

llz|| < R+t]|w| Lo

In conclusion, we obtain [ , he(p(x,t))dx > —ce + [, he(po(x)). We can now
pass to the limit on € using the Lebesgue dominated convergence, and we obtain
Jwa min(p(x,t),0) > 0. The result follows readily. O

By proceeding as in [3], it is possible to improve the above nonnegativity principle
and to establish positivity of the density.

LEMMA 3.2 (positivity density principle). In addition to the assumptions of
Lemma 3.1, we further assume that there exists p,, > 0 such that for all t there is Ry
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such that inf > g, p(@,T) > py for all T € (0,t), and (V-u(z,t)); € L(0,t; L>(RY)).
Then,

meas({x € R | p(x,t) =0}) =0 Vt>0,

meaning that the vacuum zones (if any) have zero Lebesgue measure.

Proof. Let ¢ be defined as follows: ¢(z) = lnz if 0 < z < 1, and ¢(z) = 0 if
z > 1. Note that ¢ is nonpositive, monotonically increasing, and concave and satisfies
|z¢/(2)] <1 for all z > 0. As in Lemma 3.1, we take a regularization ¢. of ¢ which
preserves these properties and approximates ¢ uniformly on R, ; say there is ¢ > 0 so
that sup,c., [de(2) — d(2)] < ce, [2¢.(2)| < 1 and ¢ ¢ < 0.

Let B(0, R) be the ball centered at 0 of radius R such that

t
// 1AV p| + up + V-(pu)| da <
0 Jri\B(0,R)

and inf) g >rp(x,7) > pm > 0 for all 7 € (0,£). We introduce the cone C :=
{(x,7) | lz|| < R+ (t —7)||ullre, 0 < 7 < ¢t} and the regularized characteristic

function x such that X|(ja| +julze (r—)<r) = 1 a0d Xl{ja| +ulpe (r—H)<r+1) = 0.
Multiplying the weak form of (3.1) by the test function x¢.(p), we obtain

/ , ((8t¢e(p) +uVoc(p) + po(p)V-u)x + ap! x| Vp|* + a¢2(p)VpVx) dz = 0.

Using the assumptions of the lemma, this also gives

/R dX(at¢6(p) + V-(wbe(p))) dz > / d(x(qﬁe(p) — pde(p))V-u + a¢2(p)VpVx) da

R

> —c/ (|V-u|+|an|)d:B+/ 6o (Vo) dac.

By proceeding as in the proof of the previous lemma, using the properties of y and
¢, we infer that

| (060 + V-tutn(on) awar > [ x(000(0) + Vo)) dm

R

t
—c// (1Vul + 000+ V-(up)]) d .
0 Jr4\B(0,R)

which, owing to the definition of the cone C, in turn implies that
t
/ (—¢e(p)) dx < /(—d)e(po))dx + c+/ / (—¢e)(V-u) 4 da dt.
<R R4 0 Jrd
We now pass to the limit on R — +o0,
t
/d(—gbe(p)) de < /d(—(be(po)) dz +c¢ +/ [sup (V-u)+] /d (—¢e) da dt.
R R 0 Lxerd R

Applying Gronwall’s inequality for [ ,(—¢c(p(x,t))) dz and passing to the limit on

R
€, we conclude that

/d |min (0, In(p(z, t)))| de < ¢
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for any ¢ > 0, which implies that meas{z € R?| p(z,t) = 0} = 0. 0

Remark 3.1. The assumptions of Lemma 3.2 are reasonable. They are fully
justified in [3]. The existence of p,, > 0 such that for all ¢ there is R; such that
inf |z >r, p(T,7) > pm for all 7 € (0,t) is related to the fact that p converges to
an unperturbed state at infinity; i.e., finite speed of propagation plus exponential
decay of the parabolic regularization do not perturb the state at infinity too much.
The assumption (V-u(x,t)); € L'(0,t; L°(R?)) can be justified by using techniques
similar to those in [3].

3.2. Minimum entropy principle. We now investigate under which conditions
on the fluxes f, g, and A a minimum principle on the specific entropy holds. To
simplify the computations and to account for the impact of the viscous part in the
mass conservation equation, we change the notation of the various viscous fluxes
introduced in (3.1)—(3.3) and assume that the following structural properties hold:

(3.6) g=06(V'u) + f @ u, h=1-1d’f, G(V?u):Vu > 0,
(3'7) F= a(p, e)vf)ﬂ a(p, 6) >0,
(3.8) L=s."(ese — psp)f +d(p,e)ps. Vs, d(p,e) > 0.

LEMMA 3.3. The specific entropy for the system (3.1)—(3.3) satisfies
(3.9) p(O0:s +u-Vs) = V-(pdVs) — f-V(ese — ps,) +1-Vse — 5.6:Vu = 0.
Proof. We rewrite (3.1)—(3.3) in nonconservative form as follows:
op+uVp+pVu—-V-f=0,

p(Ou+uw-Vu)+uV-f+Vp—Vg=0,
P(OE+uVE)+EV-f+V-(up) — V-(h+gu) =0,

where we have defined £ = p~!E. Then we obtain the equation controlling the internal
energy, e = £ — %uQ, by multiplying the momentum equation by w and subtracting
the result from the total energy equation:

p(Oe + u-Ve) + (e — 2u*)V-f + pV-u — V-h — g:Vu = 0.

The key to obtaining the equation that controls the entropy is to multiply the
mass conservation by ps,, multiply the internal energy balance by s., and add the two
resulting equations. This linear combination is motivated by the following observation,
O0a8 = 8500 p + Sc0qe, which holds for any independent variable o € {¢,x}. We then
obtain

p(Ors + u-Vs) + sc(e — 3u)V-f + (pse + p°s,)Vou
—$.(V-h+g:Vu) — ps,V-f =0.

The definition of the pressure implies that the quantity ps. + p25p is zero; see (2.7).
This simplification yields

p(0es + u-Vs) + (esc — ps,)V-f — se(g:Vu) — s.2u’V-f — 5.V-h = 0.
We now regroup the terms,

p(Ors + u-Vs) + (esc — ps,)V-f — 5. Ve(h+ 2u’ f) — sc(g:Vu — (f ® u):Vu) =0,
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and conclude by using the definitions G(V*u) :=g— fQu and l = h + %uzf with
L:=s;"(esc — ps,)f +d(p,e)ps; ' Vs. 0

Remark 3.2. The conditions G(V*u):Vu > 0, a(p,e) > 0, and d(p,e) > 0 are
essential to establishing the minimum principle on the specific entropy and the entropy
inequalities (see Theorems 3.5 and 4.1).

Remark 3.3. The structural assumption I = s_(es. — ps,)f + d(p,e)ps; Vs
is crucial; it implies that V- ((ese — ps,)f — sel) = —V-(dpVs). The definition of 1
makes sense since thermodynamics requires that s, = T-! > 0 (see (2.10)). Note
that, given (3.7), the following alternative expressions hold: I = (d — a)ps,s, 'Vp +
aeVp+dpVeorl = (a—d)(pp~t+e)Vp+dV(pe). Note in particular that I = dV (pe)
if one chooses a = d.

Let us define the quantity

(3.10) J(Vp,Ve) := —f-V(ese — psp) +1-Vse +aVp-Vs,

which is a quadratic form with respect to Vp and Ve and whose coefficients depend

on p, e, a(p,e), c(p,e), and d(p, e).
Let 14 be the dxd identity matrix. For any symmetric 2x2 block matrix N,

N := (nllﬂd nlzﬂd) ,  we denote Ny := (nll nlz) .

ni2lg  n22lg niz N2

Given row vectors X,Y € R? the quadratic form (X,Y)-N-(X,Y)7, generated
by the 2x2 block matrix N, is negative semidefinite if and only if Ny is negative
semidefinite, i.e., naa < 0 and det(Ns) < 0.

LEMMA 3.4. Assume that (3.7)-(3.8) hold. The quadratic form J(Vp,Ve) is
negative semidefinite if and only if

1
A1 ad det ——(d—a)p “s.p. > 0.
3 ddet(y) — 2 (d 2p72s2p2 > 0
Moreover, let X € R such that d(1 + X) = a; then
(3.12) J(Vp,Ve) + AdE-Vs.- Vs < 0.

The inequality (3.12) becomes strict if a > 0 and d > 0.

Proof. Using the definition of I, we rewrite J in the following form:

J = —as.Vp-Ve — aeVp-Vs. + as,|Vp|> + apVp-Vs, + aeVp-Vs. — aps,Vp-Vs,
+dps; ' Vse(5,Vp + 5.Ve) +aVp(s,Vp+s.Ve).

This expression can be further simplified as follows:

J(Vp,Ve) = 2as,|Vp|* +apVp-(5,,Vp + 5,.Ve)

+(d—a)psps. 'V p-(55eVp + 5ceVe) + dpVe (5, Vp + 5ecVe)
= (Vp,Ve)'N(Vp, Ve),

where the matrix N is defined by

ni1 = (d — a)ps,s;  spe +ap 0,(ps,),

_ (nula ni2le B ‘.
[N - <n12|]d nzgﬂd) ’ 2n12 - (d - a)pspse See + (d + a)pspe,

No2 = dpsee.
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Let us define the 2x2 block matrix Q obtained by setting a =0 and d =1 in N:

1 —1
q11 = PSpSe  Spe, q12 = PSpSe “See + PSpe, q22 = PSee-

Notice that this definition implies that the quadratic form induced by Q is
(Vp,Ve)Q:(Vp,Ve) = S£V56-Vs.

Now let us consider the 2x2 block matrix M = N + AdQ, where A\ € R. Let us set
d" = d(1 + \) and observe that

mip = (d/ — a)pspsglspe + apilap(pgsp)a
2myg = (d' — a)pspse_lsee +(d' + a)pspe;

!
Moz = d psee.

Observe finally that J(Vp, Ve) + Ad£Vs.-Vs = (Vp, Ve)-M-(Vp,Ve)L. The matrix
M is negative semidefinite if and only if Mg = d'psee < 0 and det(Mz) < 0. Note that
mas < 0 if and only if 0 < d’ since s.. < 0, owing to the convexity assumption (2.8).
We also need det(M3) to be nonnegative,

det(M2) = ((d' - a)pspse_lsp@ + ap_l(?p(pQSp))d’psee
— 3((d = a)psps;tsee + (d + a)pspe)?
= ad’ (8p(p23p)see — pzsze) — %(d’ —a)?p?s, % (SeSpe — SpSee)’

Now if we set A so that d' = d(1+ ) = a, then det(M2) is nonnegative and d’ = a > 0.
Note in passing that upon setting A = 0, this computation shows that J(Vp, Ve) <0
if and only if (3.11) holds. O

Remark 3.4. Note that we could avoid invoking the convexity of the entropy in the
above argument by taking a = 0 and A = —1. This would, however, defeat the purpose
of our enterprise, whose primary goal is to find a nonzero viscous regularization of
the mass conservation equation that ensures positivity of the density and is entropy-
compatible.

Remark 3.5. Note that J(Vp, Ve) < 0 when a = d.

THEOREM 3.5 (minimum entropy principle). Let the assumptions of Lemmas 3.1
and 3.2 hold. Assume that py and eq are constant outside some compact set. Assume
also that (3.6)—(3.8) hold. Assume that the solution to (3.1)—(3.3) is smooth; then the
minimum entropy principle holds:

inf s(x,t) > inf so(x) Yt > 0.
zerd zErd

Proof. Using definition (3.10), we have —f-V(es. — ps,) +1-Vs. = J —aVp-Vs,
which implies that (3.9) can be rewritten as follows:

(3.13) p(0rs +u-Vs) — V-(dpVs) —aVp-Vs = —J + s.6:Vu > 0.

Owing to Lemma 3.4, there is A = § — 1 so that J + AdiVse-Vs < 0. Finally we
have proved that

p(Ors +u-Vs) —V-(dpVs) — (aVp + /\d£Vse)-Vs

(3.14) pse

=—J - Ad—Vs.-Vs+5.6:Vu > 0.
s

€
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By assumption, all the fields are smooth and s — $°° uniformly when || — oo because
p and e approach the constant states p> and e* uniformly when |z| — co. For each
time ¢, let us denote spin(t) = infycza s(x,t). If spmin(t) = s°°, we have nothing
to prove, since s> > infycpa so(x). Otherwise let zmin(t) be one point where the
minimum of s is reached; then Vs(zmin(t),t) = 0 and As(zmin(t),t) > 0. Equation
(3.14) implies that

pOr5((Tmin(t),t)) — dpAs(zmin(t),t) > 0,

which in turn implies that pd;s((Xmin(t),t)) > 0, and using the positivity of density,
we conclude that the minimum entropy principle holds. O

Remark 3.6. Note that the condition (3.11) is not required to hold in order for
the minimum principle to hold.

Remark 3.7. The minimum entropy principle together with the nonnegativity of
the density implies that the internal energy is nonnegative. More precisely, let syin be
the infimum of the density at time ¢ = 0. Assume that the equation of state is such
that inf,cq e(Smin, %) > 0. Then the thermodynamics assumption s, > 0 implies
that es; > 0, which in turn gives e(s, %) > e(Smin, %) > 0 for all time ¢ since p is
nonnegative.

4. Entropy inequalities. We investigate in this section whether the regular-
ization of the Euler equations (3.1)—(3.3) is compatible with some or all generalized
entropy inequalities.

4.1. Generalized entropies. Let us consider all the generalized entropy iden-
tified in [9]. A function pf(s) is called a generalized entropy if f is twice differentiable
and

(4.1) fl(s)>0,  fils)g ' = f"(s) >0 V(pe)€RE,

where ¢,(p,e) = TOrs(p,T) is the specific heat at constant pressure. It is shown in
[9] that —pf(s) is strictly convex if and only if (4.1) holds; i.e., (4.1) characterizes the
maximal set of admissible entropies for the compressible Euler equations that are of
the form pf(s).

THEOREM 4.1 (entropy inequalities). Assume that (3.6)~(3.8) hold. Any smooth
solution to the reqularized system (3.1)—(3.3) satisfies the entropy inequality

(4.2) 3 (pf (5)) + V-(upf(s) — dpV {(s) — af(s)Vp) > 0

for all generalized entropies pf(s) if and only if a = d.
Proof. Let us multiply (3.13) by f’(s):

p(if(5) +uV[(s)) = V-(dpV f(s)) + dpf"(5)|Vs|* — af'(s)Vp-Vs
+ Jf'(5) = f'(s5)s.6:Vu.

We now multiply the mass conservation equation (3.1) by f(s), and we add the result
to the above equation:

O (pf(s)) + V-(upf(s)) = V-(dpV f(s) + af(s)Vp)
+dpf" (s)|V(s)]? + Jf'(s) = f'(s)5.G:Vu.
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We now investigate the sign of the quantity dpf”(s)|Vs|? + Jf'(s). Owing to (4.1),
we have

(4.3) dpf" (s)|Vs|? + Jf'(s) < (dpc]ljl|Vs|2 + 1) f'(s).

We now need to determine the sign of the quadratic form on the right-hand side of
the above inequality:
dpc;l|Vs|2 +J =dpcpt|s,Vp+s.Vel> +J
= dpc;1(5i|Vp|2 +25,5.Vp-Ve + s2|Ve|?) + J = dp(Vp, Ve)-S-(Vp, Ve) T,

where the coefficients of the 2x2 block matrix S are defined as

dsin = dc}lsz + ((d = a)sps; "spe +ap™20,(p%sp))
2ds19 = 2dcl§15pse + ((d - a)spse_ls@e + (d+ a)sp@) ,

d822 = d(c}lsg + See)v
and can be rewritten into the following form:

ds11 = d(cljlsi + P_Qap(P25p)) +(d— a)se_l (SPSPG - Sep_zap(PQSP)) )
2ds19 = 2d(cl§18pse + Spe) + (d — a)s; (SpSee — SeSpe) s

dson = d(c}lsg + See)-
Then upon setting z =1 — 7, we infer that
(4.4) s11 = hi1 +xp 2sep,, 2512 = 2h12 + 2p 28cPe, S22 = haa,
where the 2x2 matrix Hy defined by

2 —1 -2 2 -1
Hy = (%CP TP 9p(p”5p) SpSeCp + Spe
S$pSeCp + Spe SeCp + Sce

is shown to be negative in Lemma A.3. In particular we have sog = hogy = szc}_pl—i—see <
0 owing to the inequality ¢,T. > 1 established in (A.12). As a result, the matrix S is
negative semidefinite if and only if the determinant of S5 is nonnegative,

det(S2) = h11hee + $h22p_285pp — (h12 + %xp_zsepe 2

= det(Hs) + $p7286(h22pp — hiape) — ixzp*‘lsgpg.

According to Lemma A.3 we have det(Hs2) and haop, — h12pe = 0. This proves that

det(Sy) = —2a?p*s2p?2.
In conclusion, S is negative semidefinite if and only if z =0, i.e., a = d.
The above argument shows that dpf” (s)|Vs|> + Jf'(s) < 0 if a = d. This proves
that all the generalized entropy inequalities are satisfied if a = d.
If a # d, we consider generalized entropies such that f”(s) = (1 —€)f'(s)cp(s, p),
e € (0,1). (It is always possible to solve this ODE for any fixed value of p.) For this
subclass of generalized entropies, we have

(4.5) dpf"(s)|Vs|* + T f'(s) = (1 = e)dpc, ' [Vs[* + J) f'(s).
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From the proof of Theorem 4.1, we know that the quadratic form d,oc;1|VS|2 +J=
dp(Vp,Ve)-S(p,e)-(Vp,Ve)T is negative semidefinite if and and only a = d. Let
(p*,e*) € R2 be a pair of positive numbers so that a(p*,e*) # d(p*,e*). Since the
quadratic form generated by S(p*,e*) is not negative semidefinite, there exists a pair
of row vectors X,Y € R? so that (X,Y)-S(p*,e*)-(X,Y)T > 0. It is always possible
to choose € small enough so that

(X, Y)S(p",e")-(X,Y) — ed*p"(c) " |3 X + s2Y[2f(s%) > 0.

Now we define an initial state so that in the neighborhood of the origin we have
the following data: mg = 0, po(x) = p* + - X, ep(x) = e¢* + =Y. Notice that
with this choice, Vug = 0, Vpy = X, and Ve = Y; therefore dpg f”(s0)|V(s0)|? +
J(po,eo)f'(so) — f'(50)se(po, €0)G:Vuy > 0, which proves that the entropy inequality
is violated at the origin close to the initial time. In conclusion, a = d is a necessary
condition for all the generalized entropy inequalities to be satisfied. d

Remark 4.1. Upon redefining the velocity u = u + (d — a)V log p, the entropy
inequality (4.2) can be rewritten into the following form:

(4.6) O(pf(s)) + V-(upf(s)) = V-(dpVpf(s)) = 0.

Remark 4.2. Theorem 4.1 proves that the family of regularization such that a = d
is the most robust in the sense that it is the most dissipative. This result suggests that
the choice a = d may be a very good candidate for constructing a robust first-order
numerical method for solving the compressible Euler equations.

COROLLARY 4.2. Let « be a real number, a < 1, and assume that (3.6)—(3.8)
hold. Any smooth solution to the regularized system (3.1)—(3.3) satisfies the entropy
inequality (4.2) for all the generalized entropies pf(s) such that f' > 0 and ac;lf' >
Jif 20 —2A7 < 1 — g <2l + 2A3, where T' = (1 — a)det(X)p?s;2p;2 and A =
L(1+71).

Proof. We proceed as in the proof of Theorem 4.1, replacing H by H®, where H*
is obtained from H by substituting ¢, ' by ac,'. Upon replacing ¢, ' by ac, ! in the
proof of Lemma A.3, we infer that det(Hy) = (1—a)p~2det(X) and s (hSop,—h$ipe) =
(1 —a)p~2det(X). Then by defining $* as in (4.4), where H is substituted by H%, we
obtain

det(S5) = (1 — a)p ?det(X) + zp *(1 — a)det(X) — 12?p~*s2p?
=p (1 = a)det(D)(1 + ) — 2°p~s2p7),

where we defined = 1 — . Then upon setting I' = (1 — a)det(X)p?s;?p;? and
A =T(1+7T), we conclude that the matrix S5 is negative definite if

oI — 2A3 <1—%<2F+2A%,

which ends the proof. O

COROLLARY 4.3. Any weak solution to the reqularized system (3.1)—(3.3) satisfies
the entropy inequality (4.2) for the physical entropy ps (i.c., f(s) =s) if 2T — 2A% <
-9 <2+ 2A%, where T' = det(¥)p%s;2ps2 and A =T(1+1T).

Proof. Take av = 0 in Corollary 4.2 or use (3.11). O
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4.2. Ideal gas. Let us illustrate the above theory in the case of ideal gases,
ie., s = log(eﬁp_l) with v > 1. We have ¢ = y(y — 1)e, ¢, = y(y — 1)71,
det(X) = (y—1)"te 2, f =aVp,and I = yde($ — 1+ %)Vp + dpVe. The range for
the ratio ad~! for Corollary 4.3 to hold is
@7) 2 - m<i-%<c X 1+

v—1 d ~-1

9= % is clearly in the admissible range for the physical
entropy inequality. This particular choice is such that I = dpVe and f = d”T_le;
i.e., I does not involve any mass dissipation. The choice a = d implies f = aVp and

1l =aV(pe).

In particular, the choice 1 —

5. Discussion. We show in this section that the regularization proposed above
is a bridge between the Navier—Stokes and parabolic regularizations of the Euler
equations that reconciles the two points of view.

5.1. Parabolic regularization. The first natural question that comes to mind
is how different is the general regularization (3.1)—(3.3) from other known regulariza-
tions? In particular, how does it differ from the parabolic regularization (2.11)—(2.14)?
The answer is given by the following, somewhat a priori frustrating, result.

PROPOSITION 5.1. The parabolic reqularization (2.11)~(2.13) is identical to (3.1)—
(3.3) with (3.6)-(3.8), where a =d =¢, G = epVu.

Proof. The equality a = € comes from the identification f = eVp in the mass
conservation equation in (2.11) and (3.1). The identity eVm = eVp ® u + epVu
implies that, upon setting g = f ®@u+ G with G = ¢pVu, the momentum conservation
equations in (2.12) and (3.2) are identical. Upon observing that

1 1 1
gu=u’f+Gu=cu’Vp+ iequ2 = eV§pUZ + §u2f,

we obtain that
1 1
eVE = eV (pe) + Viepu2 =eV(pe) — §U2f +gu.

As a result, the energy equations in (2.13) and (3.3) are identical if one sets h =
I — u?f, with I = eV(pe), meaning d = e. a

Remark 5.1. Even when a = d, one important interest of the class of regulariza-
tion (3.1)-(3.3), when compared to the monolithic parabolic regularization, is that it
decouples the regularization on the velocity from that on the density and internal en-
ergy. In particular, the regularization on the velocity can be made rotation invariant
by making the tensor G a function of the symmetric gradient V*w. This decoupling
was not a priori evident (at least to us) when looking at the monolithic parabolic
regularization (2.11)-(2.13).

5.2. Connection with phenomenological models. When introducing the
structural assumptions (3.6)—(3.8) into the balance equations (3.1)—(3.3), we obtain
the following system:

(5.1) Oop+V-m—-V-f=0,
(5.2) om+ V-(u®@m)+Vp—V-(6(V'u) + feu) =0,
(5.3) HE + V-(u(E +p)) — V-(L+ Lu? f + G(Viu)-u) = 0.
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When looking at (5.1)-(5.3), it is not immediately clear how this system can be
reconciled either with the Navier—Stokes regularization or with any phenomenological
modeling of dissipation.

It is remarkable that this exercise can actually be done by introducing the quantity
U,, = u — p_ ' f. The above conservation equations can then be rewritten as follows:

(5.4) Op+ Ve(ump) =0,
(5.5) om + V-(u, @ m) + Vp — V-(6(V°u)) =0,
(5.6) WE + V-(unE) = V-1 —ef)+ V- ((pl — 6(V*u))u) =0,

with again m = pu and E = pe + % pu?. Tt is surprising that this system involves two
velocities. It is also somewhat surprising to observe that the above system resembles
the Navier—Stokes regularization. In particular, if one sets a = d, the term I — ef
becomes dpVe, which upon assuming de = ¢, dT', reduces to d(p, e)pc, VT; i.e., one
recovers Fourier’s law: I —ef = d(p, e)pc, VT.

During the preparation of this paper, it was brought to our attention that the
regularization model that we propose above somewhat resembles, at least formally,
a model of fluid dynamics of [1] (see, e.g., equations (1) to (5) in [1]). The author
has derived the above system of conservation equations (up to some nonessential
disagreement on the term ! — ef) by invoking theoretical arguments from [13] and
phenomenological considerations. The mathematical properties of this system have
been investigated thoroughly by [3]. Brenner has been defending the idea that it
makes phenomenological sense to distinguish the so-called mass velocity, w,,, from
the so-called volume velocity, u, since 2004 (or so). We do not want to enter this
debate, but this idea seems to be supported by our mathematical derivation of (5.4)—
(5.6), which did not invoke any ad hoc phenomenological assumption. Recall that our
primary motivation in this project is to find a regularization of the compressible Euler
equations that can serve as a good numerical device, and by good we mean that the
model must give positive density, positive internal energy, and a minimum entropy
principle and be compatible with a large class of entropy inequalities.

5.3. Conclusions. Let us finally rephrase our findings. In its most general form,
the regularized system (5.4)—(5.6) can be rewritten as follows:

(5.7) Op + V-(ump) =0,

(5.8) om + V-(u, ®m) + Vp — V-(G(Vu)) =0,

(5.9) WE +V-(unE) —V-q+ V-((pl - G(V°u))-u) =0,
(5.10) U =u — a(p,e)Vlogp,

(5.11) g = (a—d)pVlogp+ dpVe, a(p,e) >0, d(p,e) >0,

where a and d must satisfy the inequalities established in Corollary 4.3, i.e., 2I" —
2A% <12 < 20 4 2A2, where I’ = det(¥)p?s; %p; 2 and A = (1 + ).

It is established in Lemma 3.1 that the definition of f = a(p, e)Vp is compatible
with the positive density principle. The particular form of g in (5.11) results from
the definition of I (see (3.8)), which is required for the minimum entropy principle
to hold, as established in Theorem 3.5. It is finally proved in Theorem 4.1 that the
most robust regularization, i.e., that which is compatible with all the generalized
entropy & la [9], corresponds to the choice a = d. Various relaxations of the constraint
a = d are described in Corollaries 4.2 and 4.3. As observed in subsection 5.1, the
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parabolic regularization can be put into the form (5.7)—(5.11) with the particular
choice G = aVu, which is not rotation invariant and uses the same viscosity coefficient
for all fields.

Since the case a = d is the most robust, we finally rewrite (5.7)—(5.11) with this
choice in a form that is more suitable for numerical implementation:

(5.12) Op + V-(up) — V-(aVp) =0,
(5.13) om+V-(u@m+pl) — V- (aVp@u+ G(Vu)) =0,
(5.14) HE + V-(u(E +p)) — V-(aV(pe) + 3u*aVp + G(Viu)-u) = 0.

5.4. Numerical illustrations. We finish with some theoretical and numerical
illustrations of the points made in the paper.

To illustrate that the Navier—Stokes regularization is not appropriate for solving
the Euler equations, as claimed in subsection 2.3, let us consider a contact wave
and a polytropic ideal gas. Let up be a uniform flow field and py be a uniform
pressure field. Let py be some initial density field. Let p(a,¢) be the solution of
Oep+V-(upp)—V-(aVp) = 0 with p(x,0) = po(x). We claim that p(z,t), u(x,t) = uo
and p(x,t) = po solve (5.12) and (5.13), respectively. We now verify that (5.14) is
solved as well. Using that w(x,t) = ug and p(x,t) = po, (5.14) gives d;(pe) +
Tudoip + +V-(uope) + 3u3dV-(uop) — V-(aV(pe)) — 2udV-(aVp) = 0, which reduces
to O(pe)+V-(ugpe) —V-(aV(pe)) = 0 due to mass conservation (5.12). This equation
is trivially satisfied for a polytropic ideal gas since pe = (y — 1)pp is a uniform
constant over the domain. In conclusion, (5.12)-(5.14) is compatible with contact
waves in polytropic ideal gases. The reader can verify that this is not the case for the
Navier—Stokes regularization (2.16)—(2.18) unless k = 0, which then does not leave
any regularization of the density and the internal energy.

21 21

2 — 4 2

AN
14 14

09 09
0 1 0 1

(a) Density, t = 0.3, Kk = 5. (b) Density, t = 0.3, kK = %

Fi1G. 1. Density field: New regularization (red) versus exact solution (blue).

We further illustrate this point by solving the above contact wave problem numer-
ically. We consider a one-dimensional contact wave problem with initial data ug = e,
po = 1, and po(z) = 2 if x < 0.15 and po(x) = 1 if > 0.15. We use piecewise lin-
ear continuous finite elements in space on a uniform grid over the interval [0,1] and
Runge-Kutta 3 to step in time. We set f = x|u|hd,p and G = L (|u| + vAT)0,u in
(5.12)—(5.14), where h is the mesh size. The problem is solved until ¢ = 0.3 on a mesh
composed of 400 grid cells with k =5 (left panel of Figure 1) and x = % (right panel
of Figure 1).
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Fic. 2. Navier—Stokes reqularization. Density profile, t = 0.3.

The solution is a viscous wave, as claimed above. The contact is smeared as
expected, but there is no undershoot or overshoot. It can indeed be proved that in
the particular case of a contact wave, the local maximum principle is satisfied for
all values k > %, under appropriate CFL condition. It can also be proved that, in
general, the density is positive for all values k > % under appropriate CFL condition.

We now test the Navier—Stokes regularization (2.16)—(2.18) with h = k|u|hd,T
and G = 3(|u|++/T)d,u. The results are shown in Figure 2 with k = 5, k = 1, and
k = 0. We observe first that spurious numerical oscillations are created when k = 0,
thus confirming the argument made at the end of subsection 2.3. Second, we observe
that the numerical solution is incompatible with the contact wave; two extra viscous
waves propagate outward from the contact line. This phenomenon is amplified as &
grows.

This example shows the superiority of the proposed regularization (5.12)-(5.14)
over the more traditional Navier—Stokes regularization (2.16)—(2.18). More details
on how the proposed technique can be implemented numerically with continuous
finite elements and the proofs of the statements above regarding positivity of the
approximate density will be reported in a forthcoming paper.

Appendix A. Primer in thermodynamics. We collect in this appendix stan-
dard results from thermodynamics that are used in the paper.

A.1. Chain rule. Let ® : R? 3 (a, B) — ®(a, B) = (¢(c, B), ¢ (c, B)) € R? be
a C!-diffeomorphism. The following holds:

(A1) 1 ( g —5,3¢> _ (8¢Oz 5¢a)
' 009050 — Dpp0atp \ =0t Oud pB OpB)’

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/09/19 to 129.2.11.33. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

302 J.-L. GUERMOND AND B. POPOV

In particular, if ¢(a, 8) = a, we have

dat(a, B) 1
A2 OaB(a, 1)) = —————%, Oyfla,9p) = ———.
2 A= g 2= )
A.2. Speed of sound. The square of the speed of sound is defined to be
(A.3) = 0pp(p, 5);

i.e., ¢? is the partial derivative of the pressure as a function of the density and the
specific entropy. Using the chain rule, this definition is equivalent to

(A4) ¢ = 0,p(p,s) = 9,p(p,€) + dep(p, €)0,e(p, 5),

and, using (A.2) with o = p, § = e, 1) = s, one obtains
s
(A.5) ¢ =pp — —Lpe(p,e).
Se
Using the following representations of p. and p,,
(A.6) De = PZS;Z(SPSGG — SeSpe), Pp = 5;2(/’2%5% - sea(pZSp)),
the expression (A.5) also gives

(A7) = p?s,3(2505,5pe — s2p 20(p?s,) — ste@).

A.3. Convexity of the entropy, det(X). Let us define the matrix
—2 2
" () )
Spe See

which, up to the p factor, is the Hessian of the entropy with respect to the variables
(p~',€). The convexity assumption on the entropy implies that s.. and p~19,(p%s,)
are negative. We have the following characterization of the determinant of ¥:

(A.9) det(X) = 52(ppTe —pelp).
To prove this statement, we observe that the following holds owing to (A.6):
50T = —See, seTp = —5pe,
$2pe = pz(spsee — SeSpe) sgpp =p? (Spspe - S@p_zap(pQSp)) )
The result is now evident.

A.4. Specific heat at constant pressure. The specific heat at constant pres-
sure is defined to be ¢,(p,e) = TOrs(T,p).

LEMMA A.1. The quantities det(X), ¢*, and c, are related by
(A.10) cpdet(T) = s3c2.

€

Proof. Using the chain rule, we can rewrite the above definition as follows:

cp(p,€) = g (3,07 (p, T) + scer(p, T)).
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The change-of-variables formula (A.1) with the convention (o = p, 8 = ¢) and (¢ =
p,y =T) gives

—Pe
ppTe - peTp '

Pp

pr(p,T) = =—
( ) ppTe - peTp

er (p7 T)
We then have the following expression for c,:

A1l cp = s;li(ppse —pesp)'
( ) v ppTe _peTp

Then, using the expression of ¢? in (A.5) and the relation (A.9), we arrive at the
desired expression. a
LeEMMA A.2. The following holds:

(A.12) epTe > 1.

Proof. The definition of ¢, implies that we need to estimate T'sr(p,T)Te(p,€).
The chain rule implies

1 ="Tsec(p,e) = Tsp(p, T)pe(p,e) + Tsr(p, T)Te(p, €).

The result will be established if we can prove that s,(p,T)pc(p,e) < 0. We now
calculate sp(p,T). The chain rule implies again that

(Sp(pv T))_l = ps(sv T) = pp(pv e)pS(Sa T) + pe(pv 6)85(57 T)
Then using (A.1) with the convention (o = p, 5 =€) and (¢ = 5,9 = T') gives

T
spTe — s.T)’

~T,

J(5.7) = o(5,T) = ——2 .
pa(s,T) O P

This in turn implies that

~ ppTe —pT, _s;gdet(i)

(3p(p, 7)) = ps(5,T)

SPT@ — SeTp p_zpe

since s,Te—s.1), = s;z(—spsee—l—sespe) = —p~2p., where we used (A.6). In conclusion,
sp(0, T)pe(p, €) = —s2p2p~2det(T) ™1 < 0, owing to (2.8) and (2.10), which concludes
the proof. O

Remark A.1. Note in passing that the convexity assumption (2.8) implies that
T, > 0, which, owing to (A.12), implies that ¢, > 0. This in turn implies that ¢* > 0,
owing to (A.10); i.e., the Euler system (2.1)—(2.4) is hyperbolic under the convexity
assumption (2.8) and the positivity assumption on the temperature (2.10). Positivity
of the pressure is not needed to establish this fact.

A.5. Matrix Hs. Investigations on entropy inequalities involve the quadratic
form induced by the matrix Hs:

—1 — -1

o = (S0P +0720,(P%50)  SpSeCp’ + Spe

2 — —1 2 —1 .
SpSeCp” + Spe SeCp + Sce

Some key properties of this matrix are collected in the following lemma.
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LEMMA A.3. The following properties hold:

(i) det(Hz) = 0.
(ii) Heo is negative semidefinite.
(111) hggpp — hlgpe = 0

Proof. (i) Using the expressions (A.7) and (A.9) for the speed of sound, ¢?, and

det(Y), and the relation (A.10), the determinant of Hy is rewritten as follows:

det(Hz) = (Szc};l +p720,(pP50)) (s2¢p" + See) = (sp5eCp + 8pe)”
= p~2det(X) + cp' (s2p720,(p%sp) + 5;23566 — 25p5eSpc)
= p2det(X) — cp'c?p 253 = 0.

€

This is essentially the result established in [9, p. 2126].

(ii) Owing to the inequality 1 < ¢,T, established in (A.12), we infer that hos =

s2cp! + see < 0, which together with (i) proves statement (ii).

(iii) Let us compute s 2(haop, — hi2pe),

5g2(h22pp — hizpe) = (C;I —Te)pp — (spsglc;1 —Tp)pe

=p.T, —pyTe + cglse_l(sepp — SpPe)-

This proves that s, ?(haap, — hi2pe) = 0, owing to (A.11). O
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